فيزياء»الغات، .. لثالثة ثانوى

مراجعةة ليلة الامتحان.. وبنكك أسئلة" شامل لأهم الأسئلة المتوقعةة فى سؤال الاثباتات

in ampere and (L) is it metre, the force will be in Newton, and the
const. will be equal to unity, thus: F=BIL

**When a current carrying wire makes an angle (θ) with
direction of the magnetic field. The force is given by:
$\frac{\mathbf{F}=\mathbf{B} \mathbf{I} \mathbf{L}}{}$
(4) Prove that the torque (τ) acting on on a rectangular current (I)carrying loop of face area (A), number of turns (\mathbf{N}) and placed parallel to a

BIA

The two sides (mn) and (op) of the loop are each of length (a) and perp.
to the magnetic flux of density to the magnetic flux of density (B) are produced on the sides where:
$\underset{\mathbf{F}}{\mathbf{F}=\mathbf{B}_{\mathbf{I}} \mathbf{L}}$
Due to these two forces a resultant torque is produced which tends to rotate the coil and is given by:
$\because F=B I a$
$\tau=$ B I a

Assuming the loop of (N) turns
$\left|\overrightarrow{\mathbf{m}}_{\mathrm{d}}\right|=$ IAN is the magnetic dipole moment (Its unit A.m ${ }^{2}$)
(5) Explain how the sensitive galvanometer is connected to be used relation.

Proof
The coil a galvanometer is connected in parallel with a very low resistanc called a shunt resistance

To calculate the value of shun resistance (Rs):

parallel

بالاسِّآن الامتحان بين يديك حقيقة أكدها كتاب (الحِها

 اڭعتـحاثات

国

$\mathbf{I}_{\mathrm{g}} \mathbf{R}_{\mathrm{g}}=\mathbf{I}_{\mathrm{s}} \mathbf{R}_{\mathrm{s}}$
$\mathbf{R}_{\mathrm{s}}=\mathbf{I}_{\mathrm{g}} \mathbf{R}_{\mathrm{g}}$
$\because \mathbf{I}_{\mathrm{s}}=\mathbf{I}-\mathrm{I}_{\mathrm{g}} \quad \mathbf{R}_{\mathrm{s}}=\frac{\mathbf{I}_{\mathrm{g}} \mathbf{R}_{\mathrm{g}}}{\mathbf{I}-\mathbf{I}_{\mathrm{g}}}$
(6) Explain how the sensitive as a voltmeter deduce the required
A large multiplier
A large multiplier resistance is connected in series with the coil
galv. to convert it to voltmeter. To calculate the value of multiplier
resistance R_{m} : resistance R

$\mathrm{V}=\mathrm{Ig}_{\mathrm{g}}=\mathrm{Ig}_{\mathrm{g}} \mathrm{R}_{\mathrm{m}}$
$\mathbf{R}_{\mathrm{m}}=\frac{\mathrm{V}-\mathbf{I}_{\mathrm{g}} \mathbf{R}_{\mathrm{g}}}{\mathbf{I g}_{\mathrm{g}}}$

The E.M.F. generated in each
segment of the loop must obey this

$\because v=\omega r$
Where (ω)
Where (ω) is the angular
e.m.f. $=-B$ L

The total E.M.F. of the two

 is given by this relation:$\because \mathbf{A = 2 L I}$
\therefore e.m.f. $=-B A \omega \sin \theta$
If the number of turns is (\mathbb{N})
where (emf) is the instantaneous
E.M.F. which has max. value when θ
$=90^{\circ}$
(coil // flux lines)
$\underset{\text { e.m.f. }{ }_{\text {max }}=- \text { N BA } \omega}{\text { sub. In eq. }}$
sub. In (1)
(1)

8) Deduce the relation my which one can
evaluate the induced E.M.F. produced
in a moving straight wire To calculate the induced E.M.F $\frac{\text { produced in a moving straight wire: }}{1}$

If a wire of length (L) moves with a const. velocity (v) perp. to a
magnetic field is displaced to the right by a distance (Δx) at a time (Δ t) since.
$\begin{array}{ll}\because & \text { e.m.f. }=-\frac{\Delta \Phi}{\Delta t} \\ \text { and } & \Delta \Phi=B \Delta A\end{array}$
e.m.f. $=-\frac{B \Delta A}{\Delta t}$
by: $\quad \mathbf{v}=\sqrt{\mathbf{v}_{\mathbf{R}}^{2}+\left(\mathbf{V}_{\mathbf{L}}-\mathbf{v}_{\mathbf{C}}\right)^{2}}$ Dividing by $\mathrm{I}: \mathrm{z}=\sqrt{\mathbf{R}^{2}+\left(\mathbf{X}_{\mathbf{L}}-\mathbf{x}_{\mathrm{C}}\right)^{2}}$ (10) In mathematical way, prove that, A. voltage and the A.C. current in a non-
inductive resistor have the same phas angle on passing A.C. in a non-inductive angle on passi
ohmic resistor

Proof

When close the circuit, the potential difference at both ends of the resistance $V=V_{\text {max }} \sin u t(1)$

Instantaneous current intensity is determined from the relationship:
$I=\frac{V}{R}$
$I=\frac{V_{\text {max }}}{R} \operatorname{Sin} \omega$
$I=I_{\text {max }} \sin \cot \ldots$. (2)
Comparing equations (1), (2) find that both (\mathbf{I}, V) in, non -induction esistance have the same phase.
$\xrightarrow{\text { Current vector }} \xrightarrow{\text { Voltage vector }}$
(III) Prove the law total impedance of an A-C circuit possessing ohmic resistance and capacitors in seri

The total voltage \mathbf{V} can be determined by the relation:
$\mathbf{V}=\sqrt{\mathbf{V R}_{\mathbf{R}}^{2}+\mathbf{V}_{\mathbf{C}}^{2}}$
$\tan \theta=\frac{-V_{\mathbf{c}}}{V_{\mathrm{R}}}=\frac{-\mathbf{X}_{\mathrm{c}}}{\mathbf{X}_{\mathrm{R}}}$
$\mathbf{V}_{\mathbf{R}}=\mathbf{I R}$ and $\mathbf{V}_{\mathbf{C}}=\mathbf{I} \mathbf{X}_{\mathbf{C}}$
$Z=\sqrt{R^{2}+X_{C}^{2}}$
(12) Deduce the relation by which one can calculate the force by which the photon acts

When a beam of photons is incident on a certain surface and then reflect

The change in its linear momentum
$\Delta \mathbf{P} \quad \mathbf{P}_{\mathrm{L}}=\mathbf{2} \mathbf{~ m c}$ applies to the surface $=$ the change in linear momentum per second. F (each photon) $=\frac{\Delta \mathbf{P}_{\mathrm{L}}}{\Delta \mathrm{t}}=\frac{2 \mathrm{mc}}{\Delta \mathrm{t}}$

- The force which a beam of photon applies to the surface $F=\underline{2 \mathrm{mcN}}$
ϕ_{L} is the rate by which the photon incident on a the surface ($\phi_{L}=N / \Delta$ photons/s).
$\mathrm{F}=\mathbf{2} \mathbf{m c} \phi_{\mathrm{L}}$
$\mathrm{F}=2 \mathrm{mc} \phi_{\mathrm{L}}=2\left(\frac{\mathrm{hv}}{\mathrm{c}}\right) \phi_{\mathrm{L}}=\frac{2 \mathrm{P}_{\mathrm{w}}}{\mathrm{c}}$
M3DDeduce the relation between photon wavelength and its linear momentum. Proof
\qquad
$\lambda=\frac{\mathbf{h c}}{\mathbf{h v}}=\frac{\mathbf{h}}{\mathbf{h v} / \mathbf{c}}$
$\mathbf{p}_{\mathbf{L}}=\frac{\mathbf{h V}}{\mathbf{c}} \quad \therefore \lambda=\frac{\mathbf{h}}{\mathbf{P}_{\mathbf{i}}}$
${ }^{\text {(13) In }}$ a mathematical way to discuss the basic idea of the transistor action as an amplifie

Proof

$I_{e}=\mathbf{I}_{c}+\mathbf{I}_{\mathrm{B}}$
$\alpha_{c}=I_{c} / \mathbf{I}_{\mathrm{c}}$ (it is the ratio between the collector current and the emitter current)

If the base current is a smal electrical signal, its effect appear amplified in the collector current. base to make up for the losses due to the recombination process.
$\beta_{e}=\frac{I_{c}}{I_{B}}=\frac{\alpha_{e} \mathbf{I}_{\mathrm{E}}}{\left(1-\alpha_{e}\right) I_{E}}=\frac{\alpha_{e}}{1-\alpha_{e}}$
(14) If a current passes through a coil, deduce an equation relating the induced emf in the coil and the
rate of change of the current in rate of change of the current
the coil. From this, deduce a definition for the coefficient self-induction and the Henry.

Proof
The self-inductance:
e.m.f. $\propto \frac{\Delta \Phi}{\Delta t}$
$\frac{\Delta \Phi}{\Delta t} \propto \frac{\Delta I}{\Delta t}$
e.m.f. $\propto \frac{\Delta I}{\Delta t}$
e.m.f. $=-L \frac{\Delta I}{\Delta t}$

Where (L) is a constant known as the self-inductance of the coil and the sign due to Le
*The self-inductance of a coil (L): It is equal to the induced E.M.F
produced in a coil by self-induction when the current in the coil changes at a rate of $1 \mathrm{~A} / \mathrm{sec}$.
***The unit of self-inductance (L)
The Henry:
It is the self-inductance of a coil which produces an induced E.M.F. current changed by $1 \mathrm{~A} / \mathrm{sec}$

و قم بزيارة الموقع الإلكتروني www.ecu.edu.eg

للمزيد من اتصل على 19346 المعلومات

الجامعة المصرية الصينية
عن بداية قبول دفعة جديدة من الطلاب الحاصلين على الثانوية العامة وما يعادلها من شهادات منات لعام للحصول على البكارليوس بالتعاون مع كبرى الجامعات الصينية

